
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 Design Application to Encrypt and Decrypt of Sensitive Columns on
 Client Side

 Arafat Al-dhaqm, Dr. Majid Bakhtiari

Abstract— Most of the corporations these days have suffering from many threats that try to breaches the confidentially and integrity of corporations
databases. Insider and outsider attacks are some examples of these threats. Encryption, authentication and authorization are some of mechanisms
that the corporations have been implemented, to protect their valuables information. However, the threats still growth day by day owing to the weak-
nesses and flaws in these mechanisms. This paper proposed an application, which encrypt and decrypt the database column on the client side. It en-
crypts data in the database column with variable length key. This key is unique for each data item even in same item; the key is not fixing, it based on
the length of the plaintext which sent to the database item. The data will sent and saved to the database server as encrypted form. The advantages of
this novel notion are: first, nobody can decrypt the data item outside of the application easily, due to the variable length of key. Second, the data will sent
to the database in encrypted form, so the man in the middle cannot compromise intercept data easily. Third, the authorized entity on the server data-
base such as DBA cannot tamper the data outside of this application.

Index Terms --- Encryption, Decryption, DBA, Privacy, Insider attacks, Outsider attcak;

 —————————— ——————————

1 INTRODUCTION

Today, almost of the effective data processing is primal and
important issue for every scientific, academic, or business cor-
porations. Hence, the companies and corporations end up
installing and managing database management systems to
soakage different data processing needs. Although it is possi-
ble to buying the mandatory hardware, expand database
products, create network connectivity, and assigned the pro-
fessional people who run the system, as a traditional solution,
this solution is expensive and impractical in the database
systems which growth day by day. Different costs for the tra-
ditional solution which is mentioned above. The costs of the
hardware, software, and network are decreasing constantly.
People costs, however, generally, do not decrease. In the fu-
ture, it is likely that computing solution costs will be dominat-
ed by people costs [1]. Solutions for database backup, recovery
strategies and, reorganization to repair space or to restore the
suitable arrangement of data.
Migration or mixing from one database version to the next, are
an art still in its beginning [9]. Parts of a database solution, if
not the entire solution usually become unavailable during ver-
sion change. An organization that provides database service
has an opportunity to do these tasks and offer a value proposi-
tion provided it is efficient.

The technological aspects of developing database as service
lead to new research challenges. First and foremost is the issue
of data privacy. In the database service provider model, user
data needs to reside on the premises of the database service
provider. Most corporations view their data as a very valuable
asset. The service provider would need to provide sufficient
security measures to guard the data privacy. Privacy on the
Internet is an issue that is of significant interest. There are two
fundamental issues:
1- Privacy of data during transmission.
2- Privacy of stored data.
The first issue, privacy during network transmission, has been
studied widely in the Internet area and addressed by the Se-
cure Socket Layer protocol (SSL) [8] and Transport Layer Secu-
rity (TSL) protocol [4]. The second issue, privacy of stored data
in relational databases is less studied and of greater relevance
to database as a service model. If database as a service is to be
successful, and customer data is to reside on the site of the
database service provider, then the service provider needs to
find a way to preserve the privacy of the user data. There
needs to be security measure in place so that even if the data is
stolen, the thief cannot make sense of it. Encryption is the per-
fect technique to solve this problem. There are two dimensions
to encryption support in databases. One is the granularity of
data to be encrypted or decrypted. The field, the row and the
page. The field may appear to be the best choice, because it
would minimize the number of bytes encrypted. However, as
we have discovered, practical methods of embedding encryp-
tion within relational databases entail a significant startup cost
for an encryption operation. Row or the page level encryption
consumes this cost over larger data. The second dimension is
software versus hardware level implementation of encryption
algorithms. Critical business data in databases is an obvious
target for attackers. Although access control has been de-

————————————————

Dr. Majid Bakhtiari, Senior Lecturer Faculty of Computer Science &
Information System UNIVERSITY TECHNOLOGY MALAYSIA
Skudai, 81310 JohoreMALAYSIA.E-mail:
 bakhtiari.majid@gmail.com , bakhtiari@utm.my.
Arafat Mohammed Rashad Aldhaqm is currently pursuing masters
degree program in computer science (Information Security) in Univer-
sity Technology Malaysia. E-mail: arafat_aldoqm@yahoo.com

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ployed as a security mechanism almost since the birth of large
database systems, for a long time security of a DB was consid-
ered an additional problem to be addressed when the need
arose, and after threats to the secrecy and integrity of data had
occurred [3]. Now many major database companies are adopt-
ing the loose coupling approach and adding optional security
support to their products. You can use the encryption features
of your Database Management System (DBMS), or perform
encryption and decryption outside the database. Each of these
approaches has its advantages and disadvantages. Adding
security support as an optional feature is not satisfactory, since
it would always penalize system performance, and more im-
portantly, it is likely to open new security holes. Database se-
curity is a very big research area [6, 3] and includes topics
such as statistical database security [10], and related papers in
designing information systems that protect the privacy and
ownership of individual information while not impeding the
flow of information, include [2, 3, 4, 5]. which cause loss data
for example, power outage, hardware (hard disk failure, CPU
failure), fires, and system crashed earthquake, and floods,
lightning and human error. Human errors (intended or unin-
tended errors) are one of the biggest factors which cause loss
data and difficult to detect it, such as authorized delete, up-
date and overwriting data [1].

Organization of the Paper
The rest of this paper is organized as follow: in section 2 the
database-layer encryption, section 3 Database Storage-Tier
Encryption, section 4 Authorized Entities Management Issues,
section 5 Security Dictionary Guide, Section 6 Whole Account-
ability, section 7 Select the Formatting of the storage of En-
crypted Information, 8 Encryption of Constraints, section 9
Indexing encrypted columns, section 10 the proposed applica-
tion, section 11 conclusion.

2. Database -layer Encryption
Database-level encryption allows enterprises to secure data as
it is written to and read from a database. This type of deploy-
ment is typically done at the column level within a database
table and, if coupled with database security and access con-
trols, can prevent theft of critical data. Database-level encryp-
tion protects the data within the DBMS and also protects
against a wide range of threats, including storage media theft,
well known storage attacks, database-level attacks, and mali-
cious DBAs. Database-level encryption eliminates all applica-
tion changes required in the application-level model, and also
addresses a growing trend towards embedding business logic
within a DBMS through the use of stored procedures and trig-
gers. Since the encryption/decryption only occurs within the
database, this solution does not require an enterprise to un-
derstand or discover the access characteristics of applications
to the data that is encrypted. While this solution can certainly

secure data, it does require some integration work at the data-
base level, including modifications of existing database sche-
mas and the use of triggers and stored procedures to under-
take encrypt and decrypt functions. Additionally, careful con-
sideration has to be given to the performance impact of im-
plementing a database encryption solution, particularly if
support for accelerated index-search on encrypted data is not
used. First, enterprises must adopt an approach to encrypting
only sensitive fields. Second, this level of encryption must
consider leveraging hardware to increase the level of security
and potentially to offload the cryptographic process in order
to minimize any performance impact. The primary vulnerabil-
ity of this type of encryption is that it does not protect against
application-level attacks as the encryption function is strictly
implemented within the DBMS.

3.0 Database Storage-Tier Encryption
Storage-level encryption enables enterprises to encrypt data at
the storage subsystem, either at the file level or at the block
level. This type of encryption is well suited for encrypting
files, directories, storage blocks, and tape media. In today’s
large storage environments, storage-level encryption address-
es a requirement to secure data without using LUN (Logical
Unit Number) masking or zoning. While this solution can
segment workgroups and provides some security, it gives two
limitations:
1- It only protects against a narrow range of threats, namely
media theft and storage system attacks. However, storage-
level encryption does not protect against most application- or
database-level attacks, which tend to be the most prominent
type of threats to sensitive data.
2- Current storage security mechanisms only provide block-
level encryption; they do not give the enterprise the ability to
encrypt data within an application or database at the field lev-
el. Therefore, one can encrypt an entire database, but not spe-
cific information housed within the database.

4.0 Authorized Entities Management Issues
Authorized entities such as users, process and operating sys-
tems have rights to access to the database with suitable privi-
leges. To access database resources, a user must have a data-
base account. User account management is the basis for the
overall database system security. A DBA has the responsibility
to create and maintain all DB user accounts, which Is a large
portion of her/his system administration effort. During ac-
count creation, the DBA specifies how the newly created user
will be authenticated, and what system resources the user can
use. When a user wants to connect to a database, they must
identify themselves to the server and the server will verify
her/his identity using the pre-specified authentication method.
Current commercial RDBMSs support many different kinds of
identification and authentication methods, among them are:

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

1- password-based authentication [12]
2- host-based authentication [4, 12, 11],
Essentially, all methods rely on a secret known only to the
connecting user. It is vital that a user should have total control
over her/his own secret. For example, only she/he should be
able to change her/his password. Other people can change a
user's password only if they are authorized to do so. In a DB
system, a DBA can reset a user's password upon the user's
request, probably because the user might have forgotten
her/his password. However, as we have noticed before, the
DBA can temporarily change a user's password without being
detected and caught by the user, because the DBA has the ca-
pability to update (directly or indirectly) the system catalogs.
Design Issues in Encryption and Key Management. The most
important problem in using encryption/decryption is key
management implementation across all database platforms in
an enterprise. When we consider incorporating encryption in
a database server, there are two design issues:

1. There should be a way for a user to indicate that some
data should be encrypted before

2. Storage and an option to send encrypted data to the
application tier.

3. There should be a way for a user to specify (explicitly
or implicitly) a key that will be used for data encryp-
tion and optional HSM (Hardware Security Module)
support.

5.0 Security Dictionary Guide
A traditional data directory stores all of the information used
to manage the objects in a database. A data directory consists
of many catalog tables and views. It is generally recommend-
ed that users (including DBAs) do not change the contents of a
catalog table manually. Instead, those catalogs will be main-
tained by the DB server and updated only through the execu-
tion of system commands. However, a DBA can still make
changes in a catalog table if she/he wants to do so. To prevent
unauthorized access to important security-related information,
we introduce the concept of security catalog. A security cata-
log is like a traditional system catalog but with two security
properties:
It can never be updated manually by anyone, and its access is
controlled by a strict authentication and authorization policy.

6.0 Whole Accountability
From an administration point of view, a DBA (Database Ad-
ministrator) is playing an important and positive role. How-
ever, when security and privacy become a big issue, we cannot
simply trust particular individuals to have total control over
other people's secrecy. This is not just a problem of trust, it is a
principle. Technically, if we allow a DBA to control security
without any restriction, the whole system becomes vulnerable
because if the DBA is compromised, the security of the whole

system is compromised, which would be a disaster. However
if we have a mechanism in which each user could have control
over their own secrecy, the security of the system is main-
tained even if some individuals do not manage their security
properly. Access control is the major security mechanism de-
ployed in all RDBMSs. It is based upon the concept of privi-
lege. A subject (i.e., a user, an application, etc.) can access a
database object if the subject has been assigned the corre-
sponding privilege. Access control is the basis for many securi-
ty features. Special views and stored procedures can be creat-
ed to limit users' access to table contents. However, a DBA has
all the system privileges. Because of their ultimate power, a
DBA can manage the whole system and make it work in the
most efficient way. However, they also have the capability to
do the most damage to the system. With a separated security
directory the security administrator sets the user permissions.
Thus, for a commercial database, the security administrator
(SA) operates through separate middle-ware, the Access Con-
trol System (ACS), used for:
1- Authentication
2- Verification,
3- Authorization
4- Audit
5- Encryption and decryption.
The ACS is tightly coupled to the database management sys-
tem (DBMS) of the database. The ACS controls access in real-
time to the protected fields of the database. Such a security
solution provides separation of the duties of a security admin-
istrator from a database administrator (DBA). The DBA’s role
could for example be to perform usual DBA tasks, such as ex-
tending tablespaces etc, without being able to see (decrypt)
sensitive data. The SA could then administer privileges and
permissions, for instance add or delete users. For most com-
mercial databases, the database administrator has privileges to
access the database and perform most functions, such as
changing password of the database users, independent of the
settings by the system administrator. An administrator with
root privileges could also have full access to the database. This
is an opening for an attack where the DBA can steal all the
protected data without any knowledge of the protection sys-
tem above. The attack in this case is based on the DBA imper-
sonating another user by manipulating that user’s password,
even though the user’s password is enciphered by a hash algo-
rithm. An attack could proceed as follows:-
1- The DBA logs in as themselves.
2- The DBA then reads the hash value of the user’s password
and stores this separately.
3- The DBA copies all other relevant user data, creating a
snapshot of the user, before any alteration.
4- The DBA executes the command “ALTER USER username
 IDENTIFIED BY newpassword”.
5- The next step is to log in under the user name "username”

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

 with the password “newpassword” in a new session.
6- Finally the DBA resets the user’s password and other rele
 vant user data with the previously stored hash value.

Thus, it is important to further separate the DBA’s and the
SA’s privileges. For instance, if services are outsourced, the
owner of the database contents may trust a vendor to ad-
minister the database. The DBA role then belongs to an ex-
ternal person, while the important SA role is kept within
the company, often at a high management level. Thus,
there is a need for preventing a DBA to impersonate a user
in a attempt to gain access to the contents of the database.
The method comprises the steps of: adding a trigger to the
table, the trigger at least triggering an action when an ad-
ministrator alters the table through the database manage-
ment system (DBMS) of the database; calculating a new
password hash value differing from the stored password
hash value when the trigger is triggered; replacing the
stored password hash value with the new password hash
value. Similar authentication verification may also be im-
plemented if VPN (Virtual Private Network) based connec-
tion and authentication is used. The first security-related
component in an RDBMS (and actually in most systems) is
user management. A user account needs to be created for
anyone who wants to access database resources. However,
how to maintain and manage user accounts is not a trivial
task. User management includes user account creation,
maintenance, and user authentication. A DBA is responsi-
ble for creating and managing user accounts. When a DBA
creates an account for user Alice, they also specify how Al-
ice is going to be authenticated, for example, by using a da-
tabase password. The accounts and the related authentica-
tion information are stored and maintained in system cata-
log tables. When a user logs in, they must be authenticated
in the exact way as specified in their account record. How-
ever, there is a security hole in this process. A DBA can im-
personate any other user by changing (implicitly or explic-
itly) the system catalogs and they can do things on a user's
behalf without being authorized/detected by the user,
which is a security hole. A DBA's capability to impersonate
other users would allow them to access other users' confi-
dential data even if the data are encrypted.

7. Select the Formatting of the storage of Encrypted Infor
 mation
Application code and database schemas are sensitive to
changes in the data type and data length. If data is to be man-
aged in binary format, varbinary can be used as the data type
to store encrypted information. On the other hand, if a binary
format is not desirable, the encrypted data can be encoded and
stored in a ‘varchar’ field. There are size and performance
penalties when using an encoded format, but this may be nec-

essary in environments that do not interface well with binary
formats, if support for transparent data level encryption is not
used. In environments where it is unnecessary to encrypt all
data within a database, a solution with granular capabilities is
ideal. Even if only a small subset of sensitive information
needs to be encrypted, additional space will still be required if
transparent data level encryption is not used. The secure data
level encryption for data at rest can be based on block ciphers.
The proposed solution is based on transparent data level en-
cryption, with Data Type Preservation that does not change
ASCII Data Field Type or length. The solution provides a cost
effective implementation, avoiding changes of millions of lines
of business code in larger enterprise information systems. The
solution offers an effective last line of defense and provides:
1- Selective column-level data item encryption
2- Cryptographically enforced authorization
3- Hardware or software key management
4- Secure audit and reporting
5- Enforced separation of duties.

The method is cryptographically strong and:
1- Works with any DBMS.
2- Can use different character sets
3- Requires application on database changes.
4- No programming language dependence
5- Is fail safe
6- Requires no DBA intervention
7- The loader and queries function normally
8- Has accelerated search capabilities based on
 partial encryption of data and accelerated
 search index.

8.0 Encryption of Constraints
Encrypted columns can be a primary key or part of a primary
key, since the encryption of a piece of data is stable (i.e., it al-
ways produces the same result), and no two distinct pieces of
data will produce the same cipher text, provided that the key
and initialization vector used are consistent. However, when
encrypting entire columns of an existing database, depending
on the data migration method, database administrators might
have to drop existing primary keys, as well as any other asso-
ciated reference keys, and re-create them after the data is en-
crypted. For this reason, encrypting a column that is part of a
primary key constraint is not recommended if support for ac-
celerated index search on encrypted data is not used. Since
primary keys are automatically indexed there are also perfor-
mance considerations, particularly if support for accelerated
index-search on encrypted data is not used. A foreign key con-
straint can be created on an encrypted column. However, spe-
cial care must be taken during migration. In order to convert
an existing table to one that holds encrypted data, all the ta-
bles with which it has constraints must first be identified. All

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Client Side

Database Side

referenced tables have to be converted accordingly. In certain
cases, the referential constraints have to be temporarily disa-
bled or dropped to allow proper migration of existing data.
They can be re-enabled or recreated once the data for all the
associated tables is encrypted. Due to this complexity, encrypt-
ing a column that is part of a foreign key constraint is not rec-
ommended, if automated deployment tools are not used. Un-
like indexes and primary keys, though, encrypting foreign
keys generally does not present a performance impact.

9.0 Indexing encrypted columns
Indexes are created to facilitate the search of a particular rec-
ord or a set of records from a database table. Plan carefully
before encrypting information in indexed fields. Look-ups and
searches in large databases may be seriously degraded by the
computational overhead of decrypting the field contents each
time searches are conducted if accelerated database indexes
are not used. This can prove frustrating at first because most
often administrators index the fields that must be encrypted
social security numbers or credit card numbers. New planning
considerations are needed when determining what fields to
index; if accelerated database indexes are not used. Indexes
are created on a specific column or a set of columns. When the
database table is selected, and WHERE conditions are provid-
ed, the database will typically use the indexes to locate the
records, avoiding the need to do a full table scan. In many cas-
es searching on an encrypted column will require the database
to perform a full table scan regardless of whether an index
exists. For this reason, encrypting a column that is part of an
index is not recommended, if support for accelerated index-
search on encrypted data is not used.

10.0 Proposed application
Our proposed application is working on the client side. The
application has two tasks, encrypt and decrypt data with same
key. The application is used to encrypt data in each item on
the application level for each SQL statement such as insert or
update, and in same time decrypt data on application level for
each SQL select statement. The functions that use to encrypt
and decrypt data use the same Key. The key that used in each
encryption step is a variable length based on the length of the
plaintext. Therefore, the encryption function is change the
plaintext to ASCII code for each character of the plaintext and
add the key to each character to produce the cipher text, for
example, assume that the database item (Name) carry the data
such as Arafat. Therefore, the length of the plaintext (Arafat) is
the key, K=6. And the plaintext (Arafat) changes to the ASCII
code for each character. And then add the K to each character
that converted to ASCII code to produce the cipher text in
numeric mode. Also, the encrypted function will change the
numeric mode to alphabetic mode to give more complexity to
the cipher text and then send it to the database. The follow-

ing figure.1 explains the components of the proposed mecha-
nism.

 Cipher text

Figure.1: Proposal Application

The proposed application that encrypted and decrypted data
on the client side has to functions to encrypted and decrypted
data.

10.1 Encryption and Decryption Functions
The encryption and decryption functions consider the heart of
the proposed application. They coded and decoded the
plaintext on the client side. The core point of this application
is, it can generate the key automatically from the plaintext.
The key (K) is the length of the plaintext (PT). Therefore, it is
not fixing, it is variable owing to, based on the length of the
plaintext. The function is changing each character of the PT to
the ASCII code in numerical mode, and then adds the key to
produce the cipher text (CT). Also, change the CT from the
numerical mode to the alphabetic mode, to give more com-
plexity to the CT, this accruing in the encryption function. In
decryption function, also the key is generating automatically,
based on the length of the cipher text. The decryption func-
tion fetches the cipher text from the database and decrypted it
on the client side. It generates the key from the length of the
cipher text and the same other steps, which executed in the
encryption function will executed again in the decryption
function. The function is changing each character of the CT to
the ASCII code in numerical mode, and then subtracts the key
from the CT. next step; change the generated numerical data to
the alphabetical data.

Encrypted and Decrypted application

Database Server

User Interfaces

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

10.2 Strengths and Weaknesses
The proposed application has much strength that makes it a
good method to encrypt data between client and server on the
client side, these strengths can mention as follow:

1- Difficult to compromise or revealed a key easily, due
to it is variable not fixing.

2- The authorized entities like a DBA cannot tamper or
meddle the data outside of this application, even with
full authorize.

3- The man in the middle cannot compromise easily the
plaintext.

The weaknesses of this proposed application is suitable only
for the attributes that can classified as sensitive attributes such
as password, entity card and so on. It is not suitable for other
attributes that have represent data as objects like picture, vid-
eo.

11.0 Conclusion
The data that is traveled from the client to the database server
without encryption will face many threats through outsider
and insider attacks. This paper proposed an application,
which encrypt and decrypt the database column on the client
side. It encrypts data in the database column with variable
length key. This key is unique for each data item even in same
item; the key is not fixing, it based on the length of the
plaintext which sent to the database item. The data will sent
and saved to the database server as encrypted form. The ad-
vantages of this novel notion are: first, nobody can decrypt the
data item outside of the application easily, due to the variable
length of key. Second, the data will sent to the database in
encrypted form, so the man in the middle cannot compromise
intercept data easily. Third, the authorized entity on the serv-
er database such as DBA cannot tamper the data outside of
this application.

12.0 References
[1] I. Summerville. Software Engineering. Addison-Wesley, 6th
 Edition, 2001.
[2] G. Davida, D.Wells, and J. Kam. A database encryption sys
 tem with sub keys. ACM Transactions on Database Sys
 tems 6(2), 1981.
[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic
 databases. In Proc. of the 28th Int’l Conference on Very
 Large Databases, Hong Kong, China, August 2002.
[4] T. Dierks and C. Allen. The TSL protocol. Internet Draft,
 Nov., 1997.
[5]R.Agrawal,J.Kiernan,R.Srikant,andY.Xu.An XPathbased
 preference language for P3P. In Proc. of the 12th Int’l World
 Wide Web
Conference, Budapest, Hungary, May 2003.

[6] D. E. Denning. Cryptography and Data Security. Addi-son-
 Wesley Publishing Company, Inc., 1982.
[7] J. He and M. Wang. Encryption in relational database man
 agement systems. In Proc. Fourteenth Annual IFIP
 WG11.3 Working Conference on Database Security
 (DBSec’00),Schoorl, The Netherlands, 2000.
[8] P. Karlton, A. Freier, and P. Kocher. The SSL protocol
 v3.0.Internet Draft, Nov., 1996.
[9] D. Gupta, P. Jalote, and G. Barua. A formal framework for
 on-line software version change. IEEE Transactions on
 Software Engineering, 22(2):120–131, 1996.
[10] N. R. Adam and J. C. Wortman. Security-control methods
 for statistical databases.ACM Computing Surveys,
 21(4):515– 556, Dec. 1989.
 [11] R. Agrawal and J. Kiernan. Watermarking relational da
 tabases. In 28th Int’l Conference onVery Large Databases,
 Hong Kong, China, August 2002.
[12] T. F. Lunt. A survey of intrusion detection techniques.
 Computer & Security, 12(4), 1993

